勃利金属蚀刻是将材料使用化学反应或物理撞击作用而移除的技术。金属蚀刻技术可以分为湿蚀刻(wet etching)和干蚀刻(dry etching)两类。接下来我们就来详细滴说说湿式蚀刻的加工方法。
湿式蚀刻之所以在微电子制作过程中被广泛的采用乃由于其具有低成本、高可靠性、高产能及优越的蚀刻选择比等优点。但相对于干式蚀刻,除了无法定义较细的线宽外,湿式蚀刻仍有以下的缺点:1) 需花费较高成本的反应溶液及去离子水;2) 化学药品处理时人员所遭遇的安全问题;3) 光阻附着性问题;4) 气泡形成及化学蚀刻液无法完全与晶圆表面接触所造成的不完全及不均匀的蚀刻;5) 废气及潜在的爆炸性。
湿式蚀刻过程可分为三个步骤:1) 化学蚀刻液扩散至待蚀刻材料之表面;2) 蚀刻液与待蚀刻材料发生化学反应; 3) 反应后之产物从蚀刻材料之表面扩散至溶液中,并随溶液排出(3)。三个步骤中进行最慢者为速率控制步骤,也就是说该步骤的反应速率即为整个反应之速率。
大部份的蚀刻过程包含了一个或多个化学反应步骤,各种形态的反应都有可能发生,但常遇到的反应是将待蚀刻层表面先予以氧化,再将此氧化层溶解,并随溶液排出,如此反复进行以达到蚀刻的效果。如蚀刻硅、铝时即是利用此种化学反应方式。
湿式蚀刻的速率通常可藉由改变溶液浓度及温度予以控制。溶液浓度可改变反应物质到达及离开待蚀刻物表面的速率,一般而言,当溶液浓度增加时,蚀刻速率将会提高。而提高溶液温度可加速化学反应速率,进而加速蚀刻速率。
湿式蚀刻除了溶液的选用外,选择适用的屏蔽物质亦是十分重要的,它必须与待蚀刻材料表面有很好的附着性、并能承受蚀刻溶液的侵蚀且稳定而不变质。而光阻通常是一个很好的屏蔽材料,且由于其图案转印步骤简单,因此常被使用。但使用光阻作为屏蔽材料时也会发生边缘剥离或龟裂的情形。边缘剥离乃由于蚀刻溶液的侵蚀,造成光阻与基材间的黏着性变差所致。解决的方法则可使用黏着促进剂来增加光阻与基材间的黏着性,如Hexamethyl-disilazane (HMDS)。龟裂则是因为光阻与基材间的应力差异太大,减缓龟裂的方法可利用较具弹性的屏蔽材质来吸收两者间的应力差。